NEWTON'S METHOD Applied to CURVE DESIGN

By Cyril P. Dickson, Ph.D.

Department of Math and Sciences Navajo Community College Shiprock, New Mexico

P OR BACKGROUND the reader is referred to the Spring, 1982 edition of The Ontario Land Surveyor containing the article entitled Computer Solution of Curve Data. In which, the formula relating β , T, and L (Figure 1) is derived and the advantage of a solution using a computer program to solve for other curve data in terms of tangent length, T, and arc length, L, is explained. The following discussion will present an alternate solution and program utilizing Newton's method. Newton's method employs the recursive formula $x_i + 1 = x_i - \frac{f(x_i)}{f^{-1}(x_i)}$

where $f^{1}(x_{i})$ represents the first derivative of f(x) evaluated at x_{i} . The iteration is a method of successive substitutions where a value of $x_{i} + 1$ is calculated from the recursive formula and compared with x_{i} . If the two values are not sufficiently close, then the value for $x_{i} + 1$ is substituted into the righthand side of the recursive formula and the computation is repeated until the two values are sufficiently close. This is done in lines 50, 60, 70, 120, and 130 of the program (Figure 4).

The relationship between β , T, and L is $\beta - (Ltan\beta)/2T = 0$ (Figure 1). The Newton recursive formula from this relationship is the function of β in Figure 2. The curve will be skewed upward for large T/L ratios, i.e. large central angles, and downward for small. Beginning with an initial estimate of slightly less than 90°, line 50 (Figure 4), the iteration will follow the dashed line (Figure 2). The solution is found where the values of $f(\beta)$ and β (Figure 2) are sufficiently close as determined by line 70 (Figure 4).

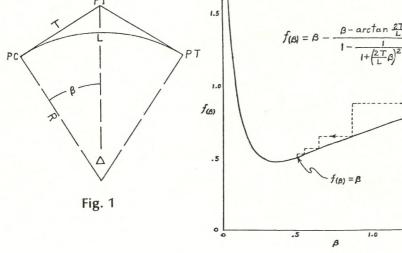
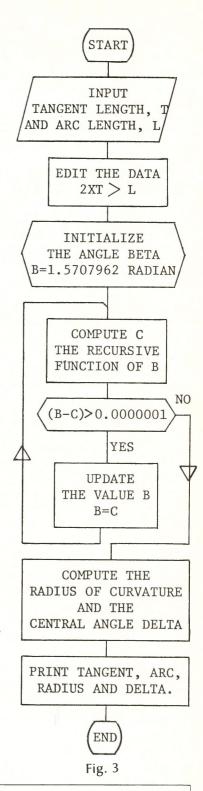



Fig. 2

1.5

10	INPUT T,L				
20					
30	PRINT "YOU HAVE ENTERED AN IMPOSSIBLE SET OF VALUES FOR T AND L."				
40					
	LET B = 1.5707962				
	LET C = B - (B - ATN (2 * T * B / L)) / (1 - 1 / (1 + (2 * T * B / L) ^ 2))				
	LET R = T / TAN (C)				
	LET D = $360 \times C / 3.1415927$				
100					
	PRINT "AND THE CENTRAL ANGLE, DELTA, IS "D" DEGREES"				
	GOTO 140				
120					
130					
140	END				

	TEST RESULTS				
	TAN	ARC	RADIUS	DELTA	
	107.15	234.79	WON'T COMPU	TE	
	100.01	200.00	5773.83259	1.98467059	
	101.02	200.02	578.042632	19.8260491	
-	112.37	197.63	166.251945	68.1096673	
	227.81	211.37	87.8779827	137.811636	
	203.05	97.43	34.7660994	160.568126	
	947.05	3.72	1.18505678	179.856607	

Fig. 4

